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ABSTRACT

This thesis analyzes the dynamic stability of positively buoyant submersibles. Six

degree-of-freedom equations of motion are used to compute steady state behavior with

motion restricted to the vertical plane. Steady state solutions are analyzed for various

conditions of buoyancy including changes in (1) the amount of excess buoyancy, (2) the

location of the center of buoyancy, (3) the location of the center of gravity, as well as (4)

the deflection of bow and stern planes. The equations of motion are then linearized around

these steady state solutions to predict dynamic response in the vertical plane. The stability

of each solution is then determined by eigen value analysis. The study then expands the

analy!,is to include all six degrees of freedom (i.e., include stability analysis in the

horizontal plane). Finally, numerical integration methods are used to verify the results.
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I. INTRODUCTION

A. PROBLEM STATEMENT

Controlling emergency ascent situations on submersible vehicles such as dive plane

jam recovery is of concern to the U.S. Navy. In order to control such situations, one must

first be able to predict the dynamic response of positively buoyant submersibles.

Dynamic response equations of motion descibe the manuevering characteristics of

submersible vehicles for six degrees of freedom. These equations assume constant

coefficients for hydrodynamic forces and moments approximated by zero frequency added

mass and damping terms plus the quadratic terms for drag forces. The constant coefficients

vary for each vehicle and are dependent on such things as vehicle body shape, location and

magnitude of vehicle weight, location and m-gnitude of vehicle buoyancy, position of bow

and stern planes, position of rudder, vehicle speed, vehicle mass characteristics, vehicle

hydr'odynamic coefficients, propeller rpm and control surface inputs. This thesis uses the

equations of motion and hydrodynamic coefficients for a submerged Mark IX Swimmer

Delivery Vehicle (SDV) developed by Smith, Crane, and Summey [Reference 1:11-16,21-

311 to forecast the dynamic stability of a submersible in a positively buoyant condition.

This study begins by using the six equations of motion to compute the steady state

behavior of a submersible vehicle with motion restricted to the vertical plane. The steady

state solutions in the vertical plane arc calculated for various conditions of buoyancy

including changes in the amount of excess buoyancy, the location of the center of

buoyancy. the location of the center of gravity, as well as the deflection of bow and stern

planes. The SDV's equations of motion are then linearized around these steady state

solutions to predict dynamic response motion in the vertical plane for the various conditions



of buoyancy. Several solutions are computed and the stability of each solution is

determined by eigen value analysis. The thesis then expands the analysis to include all six

degrees of freedom (i.e. include stability analysis in the horizontal plane). Finally,

numerical integration methods arc used to verify the results.

B. EQUATIONS OF MOTION

The six degree of freedom equations of motion for the submersible vehicle shown in

Appendix A were taken from Smith, Crane, and Summey [Reference 1:11-16].

Differentiation with respect to time is denoted by a dot over the variable; e.g. ll = du.
dt

These equations arc referenced to a right-hand orthogonal axis system fixed in the body

(vehicle) as shown in Figure 1. Since these equations are in reference to a body fixed axis

system, the Euler angles of pitch (0),roll (p), and yaw (V) are used to specify orientation

with respect to the inertial reference system. The rotation sequence for -P, 0 and V', and the

Euler angle rates for (p, 0 and V shown in Appendix B were taken from Smith, Crane, and

Summey [Reference 1:18-201. Major variables and parameters as defined by Smith,

Crane, and Summcy [Reference 1:7-101 are given below:

1. Dynamic Variables

uvw - Linear velocity components of vehicle with respect to origin of
body axes system relative to fluid.

p.q.r - Angular velocity components of vehicle with respect to body
axes system relative to inertial reference system.

X,Y.Z - Hydrodynamic force components along body axes.

K,M,N - Hydrodvnamic moment components along body axes.

2



2. Mass Distribution Parameters

m - Mass of the flooded vehicle, including the mass of the
entrained fluid.

W - Weight of the flooded vehicle, including the weight of the
entrained fluid ( = g m ; where g is the acceleration of gravity).

V - Displacement volume of the vehicle.

B - Buoyancy force acting on the vehicle (= p g V ). This is
independent of the inertial mass distribution of the submersible
vehicle, including whether or not it is flooded.

xG YG,-G Coordinates of the CG (center of gravity) in the body axis
system (Figure 1). These will depend on the mass
distribution of the vehicle, including the mass of the entrained
fluid.

xB, YB-B Coordinates of the CB (center of buoyancy) in the body axis

system (Figure 1). These are independent of the mass
distribution system, but may vary with the addition or removal
of external appendages.

IxIy.l z  - Moments of inertia about the body system axes, including the
entrained fluid.

Ixy. Ix.Iyz  - Products of inertia about the body system axes, including theentrained fluid.

3. Remaining Parameters

p - Mass density of fluid mcdium

*I - Reference length used to nondimcnsionalizc the hydrodynamic
coefficiepts.

3



b(x), h(x) Width and height of vehicle in its xy and xz planes,
respectively, at location x measured in the body axes system
(Figure 1). These quantities are required in the integrals
defining the crossflow forces and moments in the equations of
motion, and are tabulated within the Steady State Computer
Program (Appendix C).

XnoscXtail Sternplane, bowplane and rudder deflection angles in radians
(Figure 1).

4
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I1. SYSTEM SOLUTIONS IN THE VERTICAL PLANE

A. GENERAL

In the steady state condition, the submersible will have reached constant linear and

angular velocities. Therefore, the body fixed linear accelerations (6 , ,v, w) and the body

fixed angular accelerations (p , , f) will be zero. Similarly, the vehicle will have reached

a constant angle of pitch (0) making its derivatives (0) equal to zero. Since this analysis is

restricted to steady state solutions in the vertical plane, the angle of roll (9) and its

derivative (q) will be zero (in Chapter IV, the case where the angle of roll (q) is 180

degrees will be discussed during the numerical integration analysis). The angle of yaw (V4)

and its derivative (V) will likewise be zero due to the vertical plane restriction. It should be

noted that had this analysis not been restricted to the vertical plane, steady state yaw (')

would not necessarily be zero, thereby allowing the angular velocities (p, q, r) to be non-

zero. However, since this analysis was restricted to the cases where 9, 0 , V , p, q and r

are all zero, the equations of motion for six degrees of freedom for the steady state

condition can be reduced to:

* Longitudinal (Surge) Equation of Motion:

(W-B)sin 0= Xvv v2 + Xww w2 + Xvr uvbr + uw( Xw~ s bs + Xw b bb)'

+ u2 (Xbsbs bs2 Xbbbb 6bb2+ Xbrbr br 7 + u2 X prop

* Lateral (Sway) Equation of Motion:

- (W-B) cos 0 sinq= Yv uv + Yvw vw + Ybr u2 brI xnose CDy h(x) (v)2 +CDz b(x) (w)2 ---v dx

JXtail +X6



Normal (Heave) Equation of Motion

-(W-B) cos 0 cos= Zwuw+Zvv v2 +u2(Zbs 6s+Zib bb)
Xnose_J XflOSCDy h(x) (v)2 +CDz b(x) (w) 2 

-_w dx

Xtaq UctX)

* Roll Equation of Motion:

-(YG W - YB B) cos 0 cos q + (zGW -zBB) cos 0 sin

- Kv uv + Kvw vw + u2 Kprop

* Pitch Equation of Motion:

(xG W - xB B) cos0cs + (zG W - zB B) sin 0 =

M W uw + Mv v 2 + u2 (Mbs bs + Mbb b'
(Xnose

+ CD, h(x) (v)2 +CDz b(x) (w)2  w x dx
Xtai, cix

Yaw Equation of Motion:

-(xG W-xBB)cosO sing+ (YGW-YBB) sinO=

N v uv + N  vw + N&u 2 br + u2 Nprop
(Xnoseo

f-tose CDy h(x) (v)2 + CDz b(x) (%N)2 _- x dx
aXtail 

utx

B. CONDITIONS

1. Defining Additional Terms

a. Excess Buoyancy, 6B

Excess buoyancy is defined as bB = B - W where B is the submersible's

total buoyancy and W is the submersible's total weight.

7



b. Longitudunal Center of Buoyancy, XG B

The longitudinal center of buoyancy is defined as XGB = xG - xB where

xG is the longitudinal center of gravity with respect to the body fixed axis and xB is the

longitudinal center of buoyancy with respect to the body fixed axis.

c. Vertical Center of Buoyancy, zG B

The vertical center of buoyancy is defined as ZGB = zG - zB where zG is

the longitudinal center of gravity with respect to the body fixed axis and zB is the

longitudinal center of buoyancy with respect to the body fixed axis (ZGB is assumed to be

positive).

2. Assumed Conditions

a. Lateral Centers of Gravity, YG ' and Buoyancy, YB

The lateral center of gravity and the center of buoyancy are assumed to be

on the same centerline plane (y. = YB = 0).

b. Propeller Speedn (revolutions per minute)

The propeller speed is assumed to be zero (n = 0).

c. Propeller Coefficients, Kprop and Nprop

From Smith, Crane, and Summey [Reference 1:30], the propeller

coefficients are zero (Kprop = Nprop = 0).

C. REVISING THE EQUATIONS OF MOTION

Using the term for vertical center of buoyancy (zGB), the expression (ZGW - ZBB)

may be written as (ZGBW - ZBBB). Similarly, using the term for longitudinal center of

buoyancy (xGB) ' the expression (XGW - xBB) may be written as (XGBW - XBB). Also,

the term u2Xprop may be written as:

u2Xprop = u2CD41l2)=u2C I (u2CD ?LImanded-Y-1] = CDOA 2n2 - Cou 2

8



where A is a constant.

Since the shaft speed (n) is zero, the expression may be further reduced to

U2 prop =-CDOU 2. Substituting these expressions plus the term for excess buoyancy

(0B) and the assumed conditions revises the equations of motion for the six degree of

freedom system as follows:

* Longitudinal (Surge) Equation of Motion:

-ibBsinO= Xv, v2 +Xww 2 + Xbr uvbr + uWw ~ bb+ Xwbb bb)

.I ( X S 6 2 + Xbb 2b + X~ 6r) CDO U2

* Lateral (Sway) Equation of Motion:

6B cos 0 sinqk= Yv uv + Ywvw + Yb U2 ,r

xils CDy h(x) v2 +CDzb(x) w2 'v x) dx

* Normal (Heave) Equation of Motion:

6B cos 0 cos 4p = uw + Zvv v2 + u2 (Zbs bs+Zbb b)b)-J nose CDy h(x) v" +CDz bNx) w2  w dx

-fxtail Udix)

* Roll Equation of Motion:

(LGBW - zBbB) cos 0 sin ip= Kv uv + Kvw vw"

* Pitch Equation of Motion:

(xGBW -xB 6B) cos 0cos qo+ (zGB W -zB6B) sin 0

MWuw + Mvv v + U I (Mbs bs + Mbb b)'

XoeCDy h(x)" 2 +CDz b(x) w2 uw -) x dx

fxtail 
AX

9



Yaw Equation of Motion:

(-xGBW+xB 6B ) co s 0 sinop Nvuv+Nvwvw+N 6 u2 r

- x CDy h(x) v2 + CDz b(x) w2  v x dx
JXtail Uctx)

These six equations only have five unknowns: u,v,w,O, and . Therefore, two of

these equations must bc dependent and additional conditions are required in order to make

the number of equations equal the number of unknowns.

D. ADDITIONAL CONDITIONS

The next condition to be applied to the vehicle is that the rudder will remain

centerlined, that is 6r = 0. Since the solutions of interest are those in which the vehicle

remains within the vertical plane, it can be further specified that the linear velocity in the

transverse direction (v) equals zero. Recalling that the angle of roll (q) has been previously

assumed to equal zero, the trigonometric functions of q, can be identified as sing equals zero

and cosq, equals unity. Substituting these quantities back into the equations of motion,

three of the six equations of motion (sway, roll, and yaw) yield trivial solutions. In

addition, the cross-flow velocity term (Ucd for the heave and pitch equations can be

reduced to:

Uci(x) = (v +xr)2 + (w - xq)2 0 = w2° 5 = W w0

since v, r, and q are zero. Furthermore, since CDz is constant, it can be taken outside the

integral. Therefore, the three remaining equations can be wriiten as:

Longitudinal (Surge) Equation of Motion:

- 613 sin Xww w 2 + uw ( Xwbs bs + Xw6b 6b)
+ u2( X bs2 + Xbbbb b2) - CD)0 U2

10



* Normal (Heave) Equation of Motion:

6Bcos 0 = Zw uw+ u2 (Z6 s bs+Zbb 6b) - CDz ns b(x) W- dx
Iwi

* Pitch Equation of Motion:

(XGB W- xB 6B) cos 0 + (zGB W- zB 6B) sinO =x nose N W3

Mw uw + u2 (M6 s bs + M6 b b)+ CDfz b(x) xdx
fXtail Iwi

E. VERTICAL PLANE EQUATIONS OF MOTION

l .... l ......

By defining the terms Aw as the ) x) dx and xA as 1 b(x) x dx, the three

remaining equations defining motion in the vertical plane can be written as:

* Longitudinal (Surge) Equation of Motion:

-6B sin 0 = Xww w2+ uw (X w s bs + Xwbb bb)

+ u2 ( X6 stss 2 + Xbbbb bb2) - CDO U2

" Normal (Heave) Equation of Motion:
6Bcos 0 = Zw uw + u2 (zs bs+Z~b b) - CD w w A

* Pitch Equation of Motion:

(xGB W- xB 6B) cos 0 + (zGB W- zB 6B) sinO =

Mw uw + u2 (M6 s b8 + Mob b)+ CDz w 1Iw XAA,

F. COMPUTER PROGRAM DEVELOPMENT

Taking these three equations which describe motion in the vertical plane, solving the

first two for sine 0 and cosine 0. respectively; and dividing all three through by u2 yields:

II



Longitudinal (Surge) Equation of Motion:

sine 1 xww () 2 + (W)( Xwbs bs + Xw b bb)

u-2 6B -+ ( Xsbs s2 + X bbb bb2) - CDO

* Normal (Heave) Equation of Motion:

cos= 1 Zw + (Z 6s+Zbb bb) -CD z1 il A,
U2 6B i +  s U2

" Pitch Equation of Motion:

(XGBW-xB6B)co0 + (zGB W- zB bB) sin 0-
U2  U2

IW W [w[ +
+ M+ Ms b+ Mb bb)+ CDz wwIAA

U2

Now, defining the quantity uw as w,, and substituting w' back into the three

equations:

if w is positive:

" Longitudinal (Surge) Equation of Motion:

sin0= 1 Xww (w') 2 + (w')( X w 6
s s + X w 6 b b)

u-2 -- 6-B + ( x6s6s bs2 + Xhbbb 6b2) - CDO

* Normal (Heave) Equation of Motion:
cos= ! Zw(w')+(Zbs bs+Zbb bb ) - CDz(W,)Aw-

u2  bB

" Pitch Equation of Motion:

(XGB W- xB 6B)cos0_ + (zGB W- B 6B) sin0 -

U2  U2

MW (w')+ (M6 s bs + Mbb 6b)+ CDz (')2 XAA.

however, if w is negative:

Longitudinal (Surge) Equation of Motion:
sin0=. 1 XwwW'W)2+(w)(Xwbs s +X w h b bb)

U2  6B + ( Xbsbsbs 2 + Xbhb 6b2) -CDO

12



* Normal (Heave) Equation of Motion:
cos0 1I Zw6 w,)+(Z 6 s bs+Zbb bb) +CDz(W,)2 Aw

u- 6B"

* Pitch Equation of Motion:

(XGB W - XB 6B) cos0 + (ZGB W- ZB 6B) sin -
U2  U2

M, (w')+ (Mbs bs + Mbb 6b)- CDz (w')2 XAA

sin 0 cos 0
Substitutingz the equations or - and cos into the pitch equation yields the

following expressions:

if w is positive:

(xGBW-xB6B) I Zw(w')+(Zbs 6s+Z6b 6b) -CDz W')2A,
6B

(zGBW-zBB 1) 1 Xw') 2 + (w')(Xw6s 6 s + Xw6b 6b)

61B + ( x6sbs 6s2 + X6b6b 6b2) - CDO

M w (w') + (Ms 6s + M6b 6b) + CDz (w' 2 XAA,,.

and if w is negative:
(XGB W- xB 6B) Zw (w')+(Zos 6 s+Zbb 6b) + CDz(w') A,,.

6B

S(ZGB W - ZB 6B) 1 ' w')2+(w')(Xwhs 6s +Xwb6b)

6B + ( x6 s6s 6s2 + X6b6b 6b2 )- CD()

M W (w')+ (M6 s 's + Mbb 6b)- CDz (w)2 xAA

Rearranging these two equations to get them into the form: A(w') 2 + B(w') + C = 0. the

expressions become:

13



if w is positi- e:

CDzXAA,. +(ZGBW-zBbB) L Xww6B (w,)Y
+(xGBW-xB6B) 1 CDz A,6B

MW+ (zGB W - ZB 1)- ( Xws s + Xwbb bb) ( w

+ 6B W
-(XGB W- xB bB) -Z w

613

(LGB W-zBbB) 1 Xbsbs s2 + Xbbbb bb2 - CD,)

+ B =0
+ (Mbs s + Mbb bb) -(xGB W - xB 6B) 1 (Zbs bs+Zbb 66)

6B

and if w is negative:
-CDz XAAw + (zOB W - zB 6B) -1- Xw w6B i wy

-(XGB W- xB 6B) -L CDLz I
6B

Mw + (zGB W- zB 61B) (Xwbs s + Xwbb 5b)(
+ 6B (w)

-(xGB W- XB 6B) 1zw
6B

(zGB W-zB B) 6B1( X s2+ Xbbbb bb2 - CDO)+ 6B=0

+ (M6 s s + Mb bb) - (XGB W - xB 6B) 1 (Z 65 bs+Zbb bb)
6B

These quadratic expressions were then solved using the equation:

B = B 2 - 4AC
2A

where:
B =61B Mw + (zOB W - ZB 6B) Xwb s 6s + Xw6b 6b)

-(xGB W- xB 6) Zw

c = (LOB W - LB 6B) (Xbsbs b5
2 + Xbbbb bb 2 CDO)

+ 6B (Ms Ns + Mbb) - (xGB W - xB 6B) (Zbs bs+Zbb bb)

if w is positive:

A = bB(CDz xAA,,) + (ZGB W - zB 6B) Xww + (xGB W - xB 6B) CDz A.;

14



and if w is negative:

A=-bB(CDzXAA,,)+(ZGBW-z B fB) Xww -(XGBW-xBfB) CDz A.

The value of 0 was determined using the computed values of w' and the equation for

tangent 0:
sin 0

tan 0 = U
2

Cos 0

However, the value of Cos0 varied depending on the value of w', which lead to twotl-

possible solutions:

Equation for tan 0 if w' is Positive:

tan 0 (Aw"")2 -(w')( X
s bs + Xw

6 b bb) -x s 5s f 2 + Xbbbb 2 ) + C
Zw (W) + + (Zbs bs+Zh)b bb) - CDz A,,(w')!w'j

Equation for tan 0 if w' is Negative:

Xww (w') 2 -(w')( Xw s Is + Xwbb bb)( Xss s + Xfbb bb2) + Cj)0tan 0 = - - .. .. . .

Z,, (w') + + (Zbs bs+Zb 6b) + CDz A ,(w')w'

In either case, the value of u2 was computed using the expression derived from the

surge equation of motion:

u2 = 6wB sinO 2 +

-Xww (w)2- (w) ( Xwbs bs + XNbb 6b) -( Xsfs bs2 + Xbbbb fb2)+ CD

This leads to two possible solutions for u (i.e. u = ± ,u 2 ). The value of w was

computed using w = u (w'). Combining the two possible solutions of u with the two

possible values for w' derived from the quadratic expression lead to four possible

combinations of solutions for u and w. The computer program which calculates these four

possible solutions ;s contained in Appendix C. It is an interactivc program designed to

allow the operate to select the amount of excess buoyancy as a percentage of vehicle

weight (61B). the deflection of dive planes in degrees (6s), the ratio of bow planes to dive

15



weight (6B), the deflection of dive planes in degrees (6s), the ratio of bow planes to dive

planes (ob/ 6 s), the location of xGB and xB from body fixed axis origin as a percentage of

length, and the location of zGB and zB from body fixed axis origin in feet.

G. STEADY STATE RESULTS

Figures 2, 3, and 4 show typical steady state solutions for surge velocity, heave

velocity, and pitch angle as a function of dive plane angle. The two cases shown vary the

location of the longitudinal center of buoyancy; for case (a): xGB = - 1% of the vehicle

length (L). and for case (b): XGB = + 1% L. The following parameters were the same for

both cases: excess buoyancy , 6B = 2 % of the vehicle weight (W); deflection of bow

planes, b  0; location of horizontal and vertical centers of buoyancy, xB = zB = 0; and

location of vertical center of gravity, zGB = 0.1 feet.

All runs developed four solutions. For two of the solutions, the magnitude of the

surge velocititics were large while the magnitudes of the associated heave velocities were

relatively small. This has been dcscibed by Booth IRef 2: 2971 as "predominantly forward

motion". The other two solutions had small surge velocity magnitudes and large heave

velocity magnitudes. Booth [ Rcf 3: 346] referred to this type of motion as "nearly vertical

ascents". The positive or negative nature of the velocities arc associated with the value of

pitch angle. Positive heave velocities are associated with pitch angles greater than 90

degrees. That is the submersible would be ascending in a belly up orientation. Although

this steady state analysis computes four possible solutions, it gives no indication as to

which of the solutions are stable (if any). Dynamic response and stability criteria will be

discussed in the next chapter.
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III. DYNAMIC STABILITY

A. GENERAL

The first portion of this chapter uses the six degree of freedom equations of motion

along with the Euler angle rate equations for the derivatives of the angles of pitch and roll

(0 and 4p) to predict the dynamic stability when movement is restricted to the vertical plane.

These equations of motion are then linearized around the vertical plane steady state nominal

points computed in chapter II. Eigen value analysis is then used to compute the stability of

each solution. The second part of the chapter expands this analysis to include all six

degrees of freedom and uses the same steady state nominal points to predict the dynamic

stability when motion is not restricted to the vertical plane.

B. RESTRICTING MOTION TO THE VERTICAL PLANE

Since motion is restricted to the vertical plane, the body-fixed transverse veloctiy (v)

and its derivative (v) arc zero. The angles of roll (P) and yaw (V ), and their derivatives (1

and V) are also zero. We will continue to assume that the lateral center of gravity and the

lateral center of buoyancy are on the same centerline plane (YG = YB = 0), and the rudder is

centerlined (br =0).

C. LINEARIZED VERTICAL PLANE EQUATIONS OF MOTION

Substituting these values into the original equations of motion (Appendix A), yields

trivial results for three of the six equations: Lateral (sway), Roll, and Yaw. The remaining

equations reduce to the following form:

20



Longitudinal (Surge) Equation of Motion:

m - XU U + m ZG q -CD0 + Xb,,s 2 +X~bbblb 2 U2

+ + X ,bbb, uw + X + X bbl uq+ !x,,. w2

+ 'XWq - m' wq+ 'Xqq + mxG q2 - (W - B) sin 0

" Normal (Heave) Equation of Motion:

m- Z,, W -w-M xG + Zq Z s6s + Zbbb Uz

+ Z, uw + Im uq+ _mz 6 q2

- CD, b(x)(w-xq)2 (W-- xq) dx + (W - B) cos 0

* Pitch Equation of Motion:

mz( i- M,. + m x-iW + _ Iy M q =M~bS + Mbbbb u2 + Mi uw

+ Mq- mxc uq- mzGwq 'f., CD, b(x)(w-xq)2 (- _ xdx

- (XGW - xBB) cos 0 - (ZGW - zBB) sin 0

These three equations which describe motion restricted to the vertical plane are functions of

four variables (uw.q.0) plus their deriatives (6i,,, w,0). The equations of motion and the

Eulcr angle rate equation for 0 were linearized using the following generalized procedure:

BII(i.l)U + B lI(i.2)W, + BI l(i.3)q + BI l(i,4)0 = -.- u +! w +!, q 0
auL, q, dq aotk - k , Oo

where the BI l(i)'s arc the constants associated with the derivatives of the variables, the

functions fi represents the right hand side of the nonlinear equations, and i = I to 4
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identifies the three equations of motion (surge, heave, and yaw) plus the Euler angle rate

equation for 0. The partial derivatives were computed as follows:

" Partial Derivatives of the Longitudinal (Surge) EOM:

S-CDO + Xts?)bs 2 +Xbbbtb 2 )uo + (xwbsbS + Xwbbbb)Wo AI1(1,1)au

a f, = 2X, wo + (X,6s + Xw6bb)uo = Al 1(1,2)aw

= (Xwq - m)wo+ (X.ss + Xobbb)uo = Al 1(1,3)

aq

f, = (W - B) cos 0o = AI 1(1,4)

" Partial Derivatives of the Normal (Heave) EOM:

- Z.wo + 2 (Zb~bS + Zbbbbu Al 1(2,1)
du

af2aw = uOZ,- 2Cj)-dA,, wOt = Al 1(22)

12= uo(Zq + m) + 2CiA.,xwo = Al 1(2,3)
dq

-f2 (W - B) sin Oo = A 11(2.4)
a0

Note on differentiation procedure: The cross-flow velocity term (U,.) was

reduced to Uctx) = (v +xr)2 + (w - xq)2 5 
- w2. 5 = 1w - qj. Allowing
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the integ~ral term in the heave equation to be defined as 1,where:

I = CI) f b(x)(w-xq),,%k - xq! dx

d1 = IC Df b(x)(w-xq)sign (w - xq) dx = 2C tyfi b(x) 1w - xq dx
i~q)J

a~ (I' ( -q al ( -~ ' q)) 2Ciiwo Jf n, b(x) dx = 2C W~ Iw l A w

al al )(w ('- q) 2CI&.wo' x b(x) dx =-2C 1a, jwoJ XA A,,
aq - ew - q) aqJ

Partial Derivatives of the Pitch EOMI:

I' Nd)b )1b3 o+M.w =A1(,1

at- M, uO +2uOC),A,,X,%Iw(, = Al 1(3,2)
dw

aq= (Mq - mx(j)u() -mz(j,)AO - 2Cj), I,~wOj = Al 1(3,3)

at1 = (XGW - X13B) siflO( - (4,W - ZBB) cos 0() = Al 11(3.4)

Note on diff1rrntiation procedure: Again the cross-flow velocity term (Ucf) was

reduced to lw - qi. Allowing the integral term in the pitch equation to be defined
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as I., where:

12 = CDz/ b(x)(w-xq){w - xqj x dx

(w q) 2C b(x) w - xq x dx

d12 - q) ~ (wq

w12 a12 (w - = 2C)IAwo,, b(x) x dx = 2 C, Iwo XAA.

Sf lO S

all al aI (w -_ q)) - CJ) wj I X2 b(x) dx =-2CD, Iwol IA
-q 8w -q) aq fJal

Partial Derivatives of the Euler Angle Rate Equation for 0:

f 4  0 0 =AI1(4,1)

au

af14 = 0 - Al 1(4,2)
aw

Kf4  I = Al 1(4,3)
aq

f4 =0 A=A11(4,4)
80

The constants corresponding to the derivatives of the four variables (i.e. the left hand

side of the four equations) are as follows:
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" Constants Associated with Derivatives for the Longitudinal

(Surge) EOM:

q = mzj=BI1(1,3)

B11(1,2) = BI 1(1,4) = 0

* Constants Associated with Derivatives for the Normal

(Heave) EOM:

m -mZ, = Bl11(2,2)

q =:-(mxG+Z,)= B11(2,3)

BI ](2.1) = BI 1(2.4) = 0

* Constants Associated with Derivatives for the Pitch EOM:

U mz( = BI(3,1)

W - -(M,, + m x) = B11(3,2)
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q Iy - M4 = BI 1(3,3)

B 11(3,4) = 0

Constants Associated with Derivatives for the Euler Angle Rate

Equation for 0

0 => 1=B1(4,4)

BI1(4,1) = BII(4,2) = Bl1(4,3) =0

These expressions can be arranged in a matrix format to form the linearized equations

of motion in the vertical plane about the nominal steady state points. The matrix format is

as follows:

B II x X I =All x XI

where:

Al l(l,l) A 1(1,2) Al 1(1,3) All(1,4)

Al Al 1(2,1) A11(2,2) A11I(2,3) AII1(2,4)Al1= 
1

Ai 1(3,1) A 11(3,2) A] 1(3,3) A 11(3,4)

A 1](4,1) A 11(4,2) A 11(4,3) A11(4,4)

BI= BI 1(2,1) B 11(2,2) Bl1(2,3) B11(2,4)

BI 1(3,1) BI 1(3,2) BI 1(3,3) B 11(3.4)

BI(4.1) BI 1(4,2) B11(4,3) BI1(4,4)
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and
X U

q
0

D. VERTICAL PLANE COMPUTER PROGRAM DEVELOPMENT

The matrix format of the linearized equations of motion was used in the computer

program shown in Appendix D to predict the dynamic stability of the vehicle with motion

restricted to the vertical plane. The program is interactive in that it allows the operator to

select which of the four data files from the steady state analysis (Chapter 11) will be used to

define the nominal points for the linearization process. An eigen system subroutine was

used to find cigen values and eigen vectors. The program's output was called the degree of

stability and only shows the largest real part of all eigen values. The stability criteria is

such that the degree of stability must be negative in order for the solution to be stable.

E. VERTICAL PLANE DYNAMIC RESULTS

Of the four possible steady state solutions computed in Chapter II, only one solution

from each case yielded stable characteristics. There were some cases in which none of the

solutions were stable for certain ranges of parameters. The general trend of the linearized

dynamic results are fairly well demonstrated by the two cases discussed in Chapter II.

Recalling the parameters of these cases: 6B = 2%, ratio of bow to stern planes (6 b/bs) = 0,

zGB = 0.1 feet, and xB = zB = 0. The first case placed the longitudinal center of gravity aft

of the longitudinal center of buoyancy (x GB = - 1%), and the second case placed the

longitudinal center of gravity forward (xGB = + I %). Once again dive plane deflection

angle (os) was varied from - 20 to + 20 degrees for both cases. Figure 5 shows

longitudinal velocity (u) as a function of dive plane angle (b.). Case One (xGB = - 1%)
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showed predominantly forward motion, while case two (xGB = - I %) yielded nearly

vertical ascents. Figure 6 shows vertical motion (w) as as a function of dive plane angle

(6.). The results concur with Figure 5, case one shows very little vertical motion while

case two demonstrates a larger value. It is interesting to note that vertical motion (w) for

case one is positive for dive plane angles between - 20 and -4 degrees. The case one values

of 0 shown in figure 7 for dive plane angles between - 20 and -4 degrees concur with this

observation. The values of 0 greater than 90 degrees indicate the submersible is ascending

in the belly up position. The stability in the vertical plane is shown in figure 8. Degree of
stability (e) is shown as a function of dive plane angle (b). This figure shows both cases

to be stable in the vertical plane.
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Figure 5. Stable Vertical Plane Solutions for Surge Velocity
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Figure 8. Degree of Stability in the Vertical Plane

F. LINEkRIZATION OF FULL EQUATIONS OF MOTION

Referring back to the complete equations of motions shown in Appendix A, these six

equations which describe motion for the six degree of freedom system are functions of

eight variables (u.v,%w,p.q,r. ,0) plus their deriatives (UVV,,p~q~i.,). The six

equations of motion (Appendix A) along with the Euler angle rates (Appendix B) were

linearized as folows:

bjlu + bj2v, + bj3w + bj4p + bj5q + bj6- + bj7q + bj80=

ag i _9 O8g" Ogj _ Ogj a gj cpj.
__j u+ v+- w + . p+ -q+i--r r+,- , 0

aU ju , V' 2' , a v"d W P ,p , Iaq , dr r0 6,

where the bj's are the constants associated with the derivatives of the variables, the

functions P represents the right hand side of the nonlinear equations, and j = 1 to 8
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identifies the six equations of motion plus the Eulcr angle rate equations for (P and 0,

respectively. The partial derivatives of these equations were computed as follows:

• Partial Derivatives of Longitudinal (Surge) EOM:

gl =(Kwb s )bs + Xw,. b bb)w(o +2(X-b~b s s2 + Xbbbb ob 2 )uO - 2Cl)ou0 =allau

-w 
= 2Xvwo + (Xwb, 6S + Xwbb 6b)uo = a13

= -mw 0 + Xwqwo + (Xql, Os + Xqbb bb)uo = a15
dq

g1 =_ (W-B) cos0=a18

g =0=a12 g! =0 =a 14  = 0=a16-=a7
av ap ar d9

* Partial Derivatives of Lateral (Sway) EOM:

a92 =Yvuo + YvwO - Cj),Av jw( = a22av

a92 =mwo + Yp uO +Y,,.pwo = a24
dp

a92 = _ mu() +Y, uO+ Yw wo - CI)ZAWxAwo= a26
dr

g2 = (W - B) cos0 = a27
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a92 =O= al = O a23 a92= =a25 a9-==a28

Note on differentiation procedure: The cross-flow velocity term (Ucd is given

by: Uc~x) = Iv+r 2 +( xq) F7, The integral term in the sway equation

was defined as 1 31 where:

13 =CDy h(x) (v+xr)2 +CDz bx) (w-xqp, Ytxr- dx
)xtail Uctx)

Xnosc 
-ex-d

- xtail (1)( dxU

d1 3 _~U~f - (v + xr) ---Ucf I

dv ~( v + x) + +, = ,) A~ 2  
_ v

= 2 *01~ 
UCf

CI-,,o ()2A.= CD, IwoI A,

ab l v +xrd v_+ xril CzAW 2 xUf v+xr u

=~ A ~ o I ~ 1 ,AX A Iw o l C

W(32



Partial Derivatives of Normal (Heave) EOM:

ag3 = Z, wo + 2 Z 6S + 4b 6b)uo = a31
du

dg3 _

a9 -= Z UOj - 2 C DA,, Iwo = a33

- m uo + Zq uo + 2 CDz A, xAwO= a35
aq

- (W - B) sin 0o() = a38

a93 0 =a37
a93 = 0 = a32 g3 -= 0 = a34 gr = 0 =aa36av 0p ar a9

Note on differentiation procedure: The integral term in the heave equation

was defined as 14' where:
(Xnose

14 =f xtai CDy h(x) (v+xr)2 +CDz b(x) (w-xq) 2 W- x dx

Jxtail Cz x)( -xq UCAf) x)
x n s e  w - xq ) d

- Xtail()(wXd

a14 al (w-q)+1a *w-xq -I --- (w - xq) a.fav' . H. Ucf dv. "cf / (Uf 2  d kv
Cl~ A\V2 1 "' Ucf Ucf

="C 1 Awo2  -Woa dUf = 0 because Uc = 0
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2a4 a C1  Aw 2 1 Cxqo2w - 2 CD A -wd

because A, - U :dx) = v+x + (wU - ) 0 2(w - xq) = _

aw 2 IWI

d14  alq+ w -1 u
. + =I-_ -- - _ CD7.Aw 0 2o x Ulf -(w - xqy L"

dqaqUf q U~fJ u 2  a

=CD, Awwo12XA CD, Awx~4wol

a14 -

Partial Derivatives of Roll EOM:

a4= K,,uO + K,.vwo= a42
av

a94 = -m zcwo+ K uO+ Kwpwo =a44
ap

a.4=mzGiuO + Kr UO + Kw, w(I = a46

a4= Z -((wZB B) cose() = a47

a9 = 0 al-94O-=a43 a94 0 a=45 8g94 0O a48
au aw aq 8
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Partial Derivatives of Pitch EOM:

g Mw WO + 2 (MS 6s + Mbb b)uo =a51
au

g= Mw ut, + 2 CD, AwxAwoj = a53
dw

S=-mxo uo- mzc wo + Mq uo - 2 C, Iw(, =a55
aq

g5 = (xGW - x,3B) sin 0o - (z1W - zBB) cos 00 = a58

a5 = 0=a52 .. 0=a54 -- =0=a56 0 a57
av ap ar

Note on differentiation procedure: The integral term in the pitch equation

was defined as I., where:
I Xnose 1 w- x

15 = CDy h(x) (v+xr)2 +CDzb x) (w-xq)2 _ x dx

(Xnose w-xq nose

J=ai (I) (i) x dx= 14 x dx
JXtail CA Xtail

ali ,a14
aw =aw XA 2CDIAwxAIw04

a15 a d14q- XA = CD, AwxA 2Iwd = CDz I.woI

a15 = a14 dI 5  = a 4 XA= 0

v XA = r aOr
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Partial Derivatives of Yaw EOM:

ag(, = N, uO + M, wo - CD, Aw XA IwoI = a62

- = mx 6 wo+N uo+Nw wo=a640p

a96 = - m xG uO + Nr Uo + Nwr WO- CDz IA Iw = a66
ar

ag6 = (xG W -xB B) cosOo = a67

a~p

ag6 = 0 = a61 g6 0 = a63  60 = a65  0g6 ==a68
au aw q 00

Note on differentiation procedure: The integral term in the yaw equation

was defined as 16' where:
(Xnose.

16 = i CDy h(x) (v+xr)2 +CDz b(x) (w-xq)2 v +xr x dxJXtaIl Ucf(X)

Xnse v +xr 3Xno

= L i l ( U -A x ) ) x d x = f- i- 13 x d x
Jxtzql -XtaIl

016 _ 13
- XA = CD IwOI Aw XA

dv dv

013 _ 13
d3 a - " -XA = C I) AwXA 2 Iwo! = CDZ IA IWO!
ar dr

816 - 13 0XA O16 a 813

8w =w Aq 8q XA 0
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Partial Derivatives of Euler Angle Rate for q:

I = a74
ap

a97 = tan 0() = a76
ar

a97 = 0 = a71 a97 = 0 = a72 0_g7 = 0 = a73
au av aw

a9gd7 = 0 = a77 -0g7-= 0 = a78
ig7 = 0 =a75aq

" Partial Derivatives of Euler Angle Rate for 0

-8 1 = a86
aq

a8 = 0 = a81 a98 = 0 = a82 a LYS = 0 =a83 ag8s 0 =a85
au av aw aq

4 ga86 = 0 = a87 _ag = 0 a88
ags -0O=a86 '-~8
ar aOp a0

The constants corresponding to the derivatives of the eight variables (i.e. the left hand

side of the eight equations) are as follows:
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* Constants Associated with Derivatives for the Longitudinal

(Surge) EOM:

Ut! (m- X,)= bll b1 mc) 15

b12 = b13 = b14 = b16 = b17 = b18 =0

" Constants Associated with Derivatives for the Lateral (Sway) EOM:

v (m-YV)=b22 1 = (-mz(i-Yp)=b24

=i (mx(, - Yi) = b26

b21 = b23 =b25 = b27 =b28 = 0

* Constants Associated with Derivatives for the Normal (Heave)

EOM:

W = (m- Z)=b33 q (-mx(i-Z )=b35

b31 = b32 = b34 = b36 = b37 = b38

* Constants Associated with Derivativcs for thc Roll EOM:

V (-mz 6-K,.)=b42 K (-Kr)=b46

p = (Ix - Kp)= b44

b41 = b43 = b45 = b47 = b48

* Constants Associated with Derivatives for the Pitch EOM:

U =6 (mz4,)=b51 W = (-mxG-M .=b53

q =:: (Iy- - b55

b52 = b54 = b56 = b57 = b58

* Constants Associated with Derivatives for the Yaw EONI:

V = (mx- NO.= b62 1 (-Np)= b64

f = (I,- N)= b66

b61 = b63 = b65 = b67 =b68 = 0
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* Constants Associated with Derivatives for the Euler Angle Rate

Equation for :

= 1=b77

b71 =b72=b73=b74=b75=b76=b78=0

* Constants Associated with the Derivatives for the Euler Angle

Rate Equation for 0

0 1= b88

b81 = b82 =b83 = b83 = b84 = b85 = b86 = b87 = 0

These expressions can be arranged in a matrix format to define the dynamic equations

of motion for the six degree of freedom system linearized about the nominal steady state

points. The matrix format is B x X =A x X, where:
all a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48A=

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a8l a82 a83 a84 a85 a86 a87 a88

all 0 a13 0 a15 0 0 a18

0 a22 0 a24 0 a26 a27 0

a31 0 a33 0 a35 0 0 a38

0 a42 0 a44 0 a46 a47 aO

a5J 0 a53 0 a55 0 0 a58

0 a62 0 a64 0 a66 a67 0

0 0 0 1 0 a76 0 0

0 o 0 0 1 0 0 0
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bil b12 b13 b 14 b15 b 16 b17 b18

b21 b212 b23 b24 b25 b26 b2')7 b28

b31 b32 b33 b34 b35 b36 b37 b38

b41 b42 b43 b44 b45 b46 b47 b48

b51 b52 b53 b54 b55 b56 b57 b58

b61 b62 b63 b64 b65 b66 b67 b68

b71 b72 b73 b74 b75 b76 b77 b78

b81 b82 b83 b84 b85 b86 b87 b88

bli 0 0 0 W1 0 0 0

o b22 0 b24 0 b26 0 0

o 0 b33 0 b35 0 0 0

o b42 0 b44 0 b46 0 0

b51 0 b53 0 b55 0 0 0

o b62 0 b64 0 b66 0 0

o o 0 0 0 0 1 0

o0 0 0 0 0 0 1

and

xl-

x 2 v

x 3 w

X x 4 p

x 5 q

x 6 r

x 7

~x8- o
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These matrices may be reordered such that they will be of the form:

BI 0 - X'I I FAll 0 X" I
0 B22 X2 0 A22 X2

This is accomplished by rewriting the X matrix such that Xl is the same matix used

in the vertical plane analysis:

xl u
x3 w

0 W

x5 q

x8 0 XI

x4 p X2

x7 9

x2 v

x6- r

The A matrix is restructured into a matrix containing four 4 x 4 matrices with

the A12 and A21 matrices containing only the zero element.

all a13 a15 a18 0 0 0 0

a31 a33 a35 a38 0 0 0 0

a51 a53 a55 a58 0 0 0 0

0 0 1 0 0 0 0 0 All 0

0 o 0 0 a44 a47 a42 a46 0 A22!

0 0 0 0 1 0 0 a76

0 0 0 0 a24 a27 a22 a26

0 0 0 0 a64 a67 a62 a66_
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Similarly, B is restructured into a matrix containing four 4 x 4 matrices with

the B 12 and B 2 1 matrices containing only the zero element.

bli 0 b15 0 0 0 0 0

o b33 b35 0 0 0 0 0

b51 b53 b55 0 0 0 0 0

0 0 0 1 0 0 0 0 BIl1 0

o 0 0 0 b44 0 b42 b46 0 B22

o o 0 0 0 1 0 0

o o 0 0 b24 0 b22b1_6

o o 0 0 b64 0 b62 b661

As discussed, the X 1 matrix established to descibe the linearized dynamic stabilty in the

vertical plane is the same as the X I matrix within X. In addition, the All1 and BlII

matrices from the vertical plane analysis are also identical to those in X . That is:

AI1(1,l) A1I(l,2) AlI(I,3) A11(1,4) a44 a47 a42 a46-

Al= A11(2,1) A1l(2,2) A1L(2,3) All(2,4) 1 0 0 a76
AII(3,I) A1I(3,2) AII(3.3) AI1(3,4) =a24 a27 a2"2 a 26

AII(4,1) All(4,2) A1l(4,3) Al1(4,4) rLa64 a67 a62 a66

131](1,1) BIl1(l1,2) Bl11(1,3) BI11(1,4) rb44 0 b42 b46

B B 11BI(2,l1) B 11(2,2) B 11(2,3) B 11(2,4) 0 1 0 0

B 1I(3,l1) BI1I(3,2) B 11(3,3) B 11(3,4) b24 0 b22 b26

1I(4,1) Bl11(4,2) BI11(4,3) B311(4.4) b64 0 b62 b66

The A22, B22, and X2 matrices represent the additional equations necessary to describe

the linearized motion for all six degrees of freedom; henceforth referred to as the horizontal
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plane contributions. The eigen function for the six degree of freedom model is computed

by taking the determinant as follows:

All- .B11 0 = (dct XA - ?B11)(det A22 - ?B22) 0det l ---- :

0 A22- ?B22

Since the eigen function will be the product of these two determinants, the

resulting eigcn values will merely be the union of the vertical plane eigen values and the

horizontal plane cigcn values. The significance of reducing the eigen value calculation from

an 8 by 8 matrix problem to two 4 by 4 matrix problems is not in the computation time

saved. But rather in fact that now the horizontal and vertical stabilities have been separated

and identified.

G. COMPUTER PROGRAM DEVELOPMENT

The matrix format of the linearized dynamic response equations associated with

motion in the horizontal plane was added to the computer program developed previously

(Appendix D). Once again, the program is interactive in that it allows the operator to select

which of the four data files from the steady state analysis (Chapter II) will be used to

define the nominal points for the linearization process. An eigen system subroutine was

used to find eigen values and eigcn vectors. Two outputs were added to the program.

First, the degree of stability in the horizontal plane, and next the degree of stability of both

planes (i.e., the union of the vertical and horizontal degrees of stability). Reminder:

degree of stability must be negative in order for the solution to be stable.

H. DYNAMIC STABILITY SOLUTIONS

Continuing with the same cases from part E, the horizontal stability for the two cases

are shown in figure 9. Case two (xGB = + I %) is stable in the horizontal plane for all

43



values of dive plane angle (6s). Whereas, case one (xGB = - 1 %) is unstable in the

horizontal plane for dive plane angle (6s) between -20 and - 9 degrees. From figure 7, this

corresponds to values of 0 greater than 140 degrees. This indicates that the vehicle is

stable (even in the horizontal plane) for values of 0 greater than 90 degrees. A submersible

with an angle of pitch greater than 90 degrees will have a negative metacentric height and

will therefore be statically unstable. However, the results shown in figures 7 and 9 indicate

that the vehicle will remain dynamically stable is such a condition. This 'inverted

pendulum' type stability will be further investigated during the numerical integration

analysis (Chapter IV) to see if hydrodynamic and drag forces on the vehicle can actually

cause this to occur. Figure 10 shows the combined stabilities for the horizontal and vertical

planes. It should be noted that in general the horizontal plane dictated stabilty for the cases

considered.
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Because the real part of the computed eigen values must be negative in order for a

solution to be stable, it is easy to identify unstable solutions. However, the measure of

stability for a stable solution is harder to quantify. The magnitudes shown thus far for

degree of stability seem very small. Does this mean that the solutions are not very stable?

In an attempt to answer this question, the values for degree of stability for a neutrally

buoyant submersible (6B = 0 or W = B) were computed. Figure 11 shows the degree of

stability in (a) the horizontal plane and (b) the vertical plane as a function of surge velocity.

This figure shows that the magnitude of the values for degree of stability for this neutrally

buoyant case are indeed of the same order of magnitude as the positively buoyant cases

discussed earlier.
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Figure 11. Degree of Stability as a Function of Surge Velocity (u) for a

Neutrally Buoyant Submersible
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IV. SIMULATIONS AND DISCUSSION OF RESULTS

A. DYNAMIC STABILITY ANALYSIS RESULTS

The dynamic stability analysis included in this Chapter considers stability for both

planes (i.e. the analysis no longer breaks stability down by horizontal or vertical plane).

As mentioned in Chapter III, horizontal plane stability generally dictates the stability of the

vehicle.

1. Variations in Longitudinal Center of Gravity (xGB)

Figures 12 through 15 show how changing the longitudinal center of gravity

(XGB) effects the dynamic response of the submersible. For these cases, the amount of

excess buoyancy (bB) is two percent of wieght (W), the bow plane deflection angle (6b) is

zero, the vertical center of gravity (zGB) is 0.1 feet, and the longitudinal and vertical centers

of buoyancy (xB and zB) are zero. The longitudinal center of gravity (xGB) is varied from

- 2 to + 2 percent of vehicle length. When the longitudinal center of gravity (xGB) is greater

than zero, there arc stable solutions for the full range of dive plane angles. However, this

is not true when the longitudinal center of gravity (xGB) is less than zero. The range of

stable solutions is restricted when XGB= - 0.5 and - 1.0.
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2. Variations in the Amount of Excess Buoyancy (B)

Figures 16 through 19 show how changing the amount of excess buoyancy

(SB) effects the dynamic response of the submersible. For these cases, the bow plane

deflection angle (8b) is zero, the longitudinal center of gravity (XGB) is - 0.5 percent of

vehicle length, the vertical center of gravity (ZGB) is 0.1 feet, and the longitudinal and

vertical centers of buoyancy (xB and zB) are zero. The amount of excess buoyancy (8B) is

varied from 0.5 to 2.9 percent of weight (W). The only case where there are stable

solutions for the full range of dive plane angles is when buoyancy (8B) is 0.5.
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3. Variations in Vertical Center of Gravity (zGB)

Figures 20 through 23 show how changing the vertical center of gravity (ZGB)

effects the dynamic response of the submersible. For these cases, the amount of excess

buoyancy (bB) is two percent of weight (W), the bow plane deflection angle (bb) is zero,

the longitudinal center of gravity (xGB) is - 0.5 percent of vehicle length, and the

longitudinal and vertical centers of buoyancy (xB and zB) are zero. The vertical center of

gravity (zGB) is varied from 0.05 to 0.30 feet. The general trend shown in these figures is

that the larger values for vertical center of gravity (ZGB) have stable solutions over a larger

range of dive plane angles.
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4. Variations in the Longitudinal Center of Buoyancy (xB)

Figures 24 through 27 show, how changing the longitudinal center of buoyancy

(XB) effects the dynamic response of the submersible. For these cases., the amount of

excess buovanc\ (61B) is two percent of weight (NN), the bow plane deflection angle (6.) is

zero. the longitudinal center of gravity (XGB) is - 0.5 percent of vehicle length, the vertical

center of gravity (ZGB) is 0.1 feet. and the vertical center of buoyancy (zB) is zero. The

longitudinal center of buoyancy (XBI is varied from - 9 to + 2 percent of vehicle length.

The general trend shown in these figures is that the positive values for longitudinal center

of buoyancy (xB) tend to have stable solutions for positive dive plane angles. On the other

hand. the negative values for longitudinal center of buoyancy (x,) tend to have stable

solutions for negative dive plane angles.
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5. Variations in Bow Planes Deflection Angle (6b)

Figures 28 through 31 show how a non-zero bow planes deflection angle (6b)

effects the dynamic response of the submersible. For these cases, the amount of excess

buoyancy (6B) is two percent of wieght (W), the longitudinal center of gravity (xGB) is

- 0.5 percent of vehicle length, the vertical center of gravity (ZGB) is 0.1 feet, and the

longitudinal and vertical centers of buoyancy (xB and z& are zero. The bow planes are

given a deflection of - 20 degrees. The significance of the results shown in these figures is

that for certain dive plane angles (6s = -3 to -12 degrees) there are two stable solutions.
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Angle ( = - 20 degrees)

62



0.4

0.2-
o' ,/

0-

-0.2-

-0.4'

-0.6-

-1.2-

-. 4'
-15 -10 -5 0 5 10 15 20

delta s

Figure 29. Stable Heave Velocity (w) Solutions for a Non.zero Bow Plane

Angle (6b = - 20 degrees)

80

70-

6 C

50- -

40-

30-

20- // J

10-

-10-

-20
-,5 -10 -5 0 5 10 15 20

delta s

Figure 30. Stable Pitch Angle (6) Solutions for a Non-zero Bow Plane

Angle ( b = - 20 degrees)

63



0

-0.005 -

I.| I

-0.01 -

.' -O.D25-

- 0.02

S-0.025 - "

-0.03-

-0.035

-0.04-

-0.045-15 -10 -5 0 5 10 15 20

delta s

Figure 31. Degree of Stability for a Non-zero Bow Plane Angle

(b b = - 20 degrees)

B. SIMULATIONS USING NUMERICAL INTEGRATION METHODS

The linearized dynamic response results were verified by simulations using numerical

integration of the full six degrees of freedom equations of motion for the swimmer delivery

vehicle (SDV). Figure 32 shows a plot of angle of pitch (0) versus time for the center of

gravitv forward of the center of buoyancy case (XGB = + 1) with a dive plane angle (b,) of

- 15 degrees. The dotted line shows the linearized results from figure 7, the solid line

shows the numerical integration results. The steady state results of the numerical

integration method match the linearized dynamic results exactly.
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Figure 32. Numerical Integration Solution for Angle of Pitch (0) when

Center of Gravity is Forward (x(;B = + 1%)

Figure '3 shows a plot of angle of pitch (0) versus time for the center of gravity aft

o the center of buoyancy case (XGB = - 1) with a dive plane angle (b) of - 15* dc,rees.

Again the dotted line sho-.%s the linearized results from figure 7, the solid line shows the

numerical integration results. And once again, the steady state results of the numerical

intcgration method match the linearized dynamic results exactly. However, this linearized

dynamic result was for the vertical plane only, the horizontal plane stability analysis

indicated that this would he an unstable solution (figure 9). The reason for this

disagrecmcnt in the results is investigated by adding an initial angle of roll to the numerical

integration analysis. Adding a small angle of initial roll (op) = 1 degree) caused the vehicle

to stead% out at 137 degrees vice 159 degrees as shown in figurc 34. This initial roll angle

also caused a steady state roll angle of 17 degrees as showkn in figure 35. In turn, this

stead ,,state roll anglc caused the steady state .a velocity (r) sho\n in fiturc 36 (i.e.
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motion is no longer restricted to the vertical plane). Figure 37 shows a plot of z versus x

and indicates that the vehicle is taking a helical ascent as dicussed by Booth [Ref 2: 304-

305]. Therefore. the numerical integration solution resulting in a steady state pitch angle of

159 degrees (figure 33) is unstable in the horizontal plane as predicted by the linearized

dynamic response analysis.
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Figure 33. Numerical Integration Solution for Angle or Pitch (0) when

Center of Gravity is Aft (xGB =- )
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Some question still remains with regards to the measure of stabilty of the 'inverted

pendulum' solutions predicted by both the linearized dynamic response analysis and the

numerical integration analysis. The linearized dynamic response analysis predicts a stable

solution for the case when center of gravity is placed aft of center of buoyancy

(xGB = - I %) and the dive plane angle (bs) is - 7 degrees (figure 10). The corresponding

steady state value for pitch angle was 118 degrees (figure 7). A random persistent roll

disturbance (pd) was added to the numerical integration model and the results are shown in

figure 38. The solid line indicates the results when a small disturbance is added ( d

centered about 0.1 degrees), the dashed line indicates the results when a large disturbance

is added (p, centered about 1.0 degrees). As expected, the large disturbance caused the

vehicle to roll over as shown by the resulting angles of roll (0) in figure 39. However, the

vehicle continued to remain stable during small constant random disturbances in the

inverted position as shown by the resulting angles of roll ( ) in figure 40. This indicates

that indeed these 'inverted pendulum' solutions have a significant measure of sta1'ility.
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VI. CONCLUSIONS AND RECOMMENDATIONS.

The steady state analysis resulted in four possible solutions provided that vehicle

motion was restricted to the vertical plane. Analyzing the dynamic stability using the

steady state results as nominal points generally indicates that only one (if any) of the

four possible solutions will be stable. There are a few cases where two solutions are

stable, but these cases (certain non-zero bow plane dtflection angles) appear to be the

exception and not the rule.

The dynamic stability characteristics of submersibles can be separated with respect to
vertical plane motions (u,w,q,O) and horizontal plane motions (v,p,r,).

* It is possible for submersibles to be dynamically stable with respect to vertical plane

motion in thc inverted (belly up) position during ascents ('Inverted Pendulum'

stabilization).

" 'Inverted Pendulum' stabilization is also possible in the horizontal plane.

* Submersibles arc able to maintain this inverted orientation (i.e. ascend belly up

without rolling ovcr) even under some persistent roll excitation.

, As a recommendation, the dynamic stability analysis should be expanded to include

the case where angle of roll is 180 degrees, and the case where angle of roll is non-

zero (i.e. 4 neither equals zero nor 180 degrees). Analyzing the =180 degrees cases

will only involve changing a few signs with regards to trigonometlic functions;
however. analyzing the non-zero cases will require significant effort.

" Furthermore. identifying and characterizing different stability regions over a range of

variations of the system parameters should be the matter of future research.
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APPENDIX A

SIX DEGREE OF FREEDOM EQUATIONS OF MOTION

Source: Smith, Crane, and Summey [Reference 1:11-16]

LONGITUDINAL (SURGE) EQUATION OF MOTION
U-vr+wq-x 2 r

) y ~ q r ) + z G (p r + q )

p2 q2 + ')+Y pr

Xppp 2 +Xqqq 2 +Xrr r2 +Xp pr

+ Xu u + Xwq wq + Xvp vp + Xvr vr

+ uq ( Xqbs 6s + Xqbb bb) + Xrbr urbr

+ XN\ v2 + Xww, w2 + Xv6r Uv6 r + uw ( Xwbs 6s + Xwbb bb)-

+ u2 ( Xbsbs 6s2 + Xbbbb 6b2 + Xb6rr 6r2) - (W - B) sin 0

+ U xprop

2. LATERAL (SWAY) EQUATION OF MOTION

m v + ur - wp + xG (pq + r) - YG (p2 +f2) + zG (qr - p)
YpP + Yr r + Ypq pq+ Yqr qr

+ Y\' V + Ypup + Yr ur + Yvq vq + Ywp wp + Ywr wr

+ NY uv + Yvw vw+ Y6r u2 br
[Xlnose vx)d

tail CDy h(x) (v+xr)2 +CDz b(x) (w-xq)2  (v+xr) dx
.'xlail U tX

+ (W-B) cos 0 sine
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3. NORMAL (HEAVE) EQUATION OF MOTION
mw-uq+vP+XG(pr-q)PyZ(qV )z(p+ q2)

Zqq + Zp p2 + Z pr pr + Zrr r2j

+ lZ.W + Zquq +Zvp vp+ Zvr vr

+ zW UW + ZV, v2 + U2 (Z6S 6s+Zbb 6b)-"

f~ Xnoseq)
2 -!(wxq) d

3tail h(x) (v+xr)~ +CDZ b(x) dxx j ct

+ (W-B) cos 0 cos

4. ROLL EQUATION OF MOTION

Ix P + ('z -1y) qr + Ixy (pr - q') - lyz (q2 - r2)

- Ixz (pq +rT) + m YG (w - uq + vp) - zGj (V' + ur - wp) =

Kp P+Kr r + Kpq pq + Kqr qr'

+ KyV +Kpup+ Kr ur + Kvqvq + Kwpwp + Kwr wr-

+ Kv, uv + Kvw vw -+ (YG W - YB B) cos0 cos i

- zGW - zBB) cos 0 sin cp + u2 Kprop
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5. PITCH EQUATION OF MOTION

1y q + (IX - Iy) pr - Ixy (qr + 0) + Iyz (pq - r)

Ixz(p V 0- M'XG ( uq +vp) -z (u vr + wp)

Mq q + M pP 2 + M pr pr + Mrr r2

+ MW +MNq uq +Mvp vp + Mvr yr 1

+ \N uw + Mv1~3 V2 + U2 (M6S 6s + Mbb bb)

+f ns CDy h(x) (N,+ xr)2 +CDz b(x) (w (wxq) x dx
ucfx)

xtail

-(xG 'W xB B) Cos 0COSp- (ZG W -ZB B) sin 0

6. YAW EQUATION OF MOTION

1Z r + (ly -Ix) pq - Ix (p2 q q2 -yz (pr + q)

+x I~(qr - m X6 (v + ur -wP)- YG (u-r + wq)=

N p +Nr r + Npq pq +Nqr qr_

+ NN,\' + Np up + Nr ur + Nvq vq +Nxip Wvp + Nwr wr.

+. N\, uv + Nv vw + Nbr u br

CDy h(x) (\'+xr)" + ECDz b(x) (w-xq) 2  (x -r) x dx
xtail U

+(xo W~ -xBB)cosO sin + (YGW-YBB) sin 0 + u 2 Npmop
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APPENDIX B

ROTATION SEQUENCE AND EULER ANGLE RATES

1. ROTATION SEQUENCE FOR , 0 AND V

Smith. Crane, and Summey [Reference 1:8] descibe the transition from body fixed to

inertial reference frames as follows:

Since the equations of motion are referred to an axis system that is fixed for the
SDV (swimmer deliver), vehiclc), and thus translates and rotates with it, the
orientation and position of the moving body axis system relative to a fixed inertial
reference system must be specified. The orientation of the body axis system with
respect to the inertial reference system is defined by the standard Euler angles V'
(yaw), 0 (pitch), and 4p (roll). The rotation sequence from the inertial reference

system to the body system is 4' ,0 , and q as shown in Figure BI taken from Smith,
Crane. and Summcy [Reference 1:18].

2. EULER ANGLE RATES FOR ,6 AND '

The Eulcr angle rates used along with the six equations of motion (Appendix A) in

order to completcly determine the motion of the submersible were specified by Smith,

Crane. and Summcy [Reference 1:20] to be:

= p+qsin tan0+rcos tan0

0 = qcosq- rsin

sinq Cos94, = q + --..
cos 0 cos 0
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APPENDIX C

STEADY STATE COMPUTER PROGRAM

C PROGRAM STEADY
C STEADY STATE SOLUTIONS IN THE VERTICAL PLANE
C DIVE PLANE VARIATION
C

REAL L,MASS,IX, IY,IZ, IXZ, IYZ, IXY,LAMBDA
REAL KPDOT,KRDOT,KPQ,KQR, KVDOT,KP,KR,KVQ,KWP,KWR,KV
REAL KVW,KPN,KDB
REAL MQDOT,MPP,riR,MRR,MWDOT,MQ,MVP, MVR,MW,MVV,MDS
REAL MDB,NDRB
REAL NPDOT,NRDOT,NPQ,NQR,NVDOT,NP,NR,NVQ,NWP,NWR,NV
REAL NVW,NDRS

C
DIMENSION X(9) ,BR(9) ,HH(9) ,VEC1(9)

C
C GEOMETRIC PROPERTIES AND HYDRODYNAMIC COEFFICIENTS
C

Pi =4.0*ATAN(1.O)
WEIGHT=12000 .0
L = 17.425
RHO = 1.94
G = 32.2
CDO = 0.0057
MASS =WEIGHT/G
CDZ =0.5*0.5*RHO
XWW = 1.710E-01*0.5*RHO*L**2
XWDS = 4.600E-02*0.5*RHO*L**2
XWDB - 9.660E-03*0.5*RHO*L**2
XDSDS =-1.160E-02*0.5*RHO*L**2
XDBDB =-8.070E-03*0.5*RHO*L**2
CDO =CDO*0.5*RHO*L**2

zw --3.020E-01*0.5*RHO*L**2
ZDS =-2.270E-02*0.5*RHO*L**2
ZDB --2.270E.-02*0.5*RHO*L**2
MW = 9.860E-02*0.5*RHO*L**3
MDS --1.113E-02*0.5*RHO*L**3
MDB =1.113E-02*0.5*RHO*L**3

C
OPEN(21,NAME-'ST1.RES',STATUS='NEW')
OPEN(22,NAME-'ST2.RES' ,STATUS='NEW')
OPEN(23,NAME-'ST3.RES' ,STATUS='NEW')
OPEN(24,NAME-'ST4.RES' ,STATUS='NEW')
OPEN(31,NAME-'COEF.DAT',STATUS='NEW')

78



C DEFINE THE LENGTH X, BREADTH BR, AND HEIGHT HH TERMS
C

X(1) = -105.9/12.0
X(2) = -99.3/12.0
X(3) -87.3/12.0
X(4) = -66.3/12.0
X(5) = 72.7/12.0
X(6) = 83.2/12.0
X(7) = 91.2/12.0
X(8) = 99.2/12.0
X(9) - 103.2/12.0

C
BR(1) - 0.00/12.0
BR(2) = 8.24/12.0
BR(3) = 19.76/12.0
BR(4) = 29.36/12.0
BR(5) = 31.85/12.0
BR(6) = 27.84/12.0
BR(7) = 21.44/12.0
BR(8) = 12.00/12.0
BR(9) = 0.00/12.0

C
C COMPUTE AREA AND CENTROID
C

CALL TRAP(9,BR,X,AREA)
DO 9 I=1,9
VECI(I)=X(I)*BR(I)

9 CONTINUE
CALL TRAP(9,VEC1,X,XAA)
XA=XAA/AREA

C
WRITE (*,1002)
READ (*,*) DSMIND,DSMAXD,IDS
DSMIN=DSMIND*PI/180
DSMAX=DSMAXD*PI/180
WRITE (*,1001)
READ (*,*) RATIO
WRITE (*,1003)
READ (*,*) DELB
DELB=DELB*WEIGHT/100.0
WRITE (*,1004)
READ (*,*) XGB
XGB=XGB*L/100.0
WRITE (*,1005)
READ (*,*) ZGB
WRITE (*,1006)
READ (*,*) XB
XB=XB*L/100.0
WRITE (*,1007)
READ (*,*) ZB
WRITE (31,*) RATIO, DELB, XGB, ZGB, XB, ZB

C
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DO 1 I=1, IDS
C

DS-DSMIN+ (DSMAX-DSMIN) *( I-i )/( IDS-1)
IF (DELB.EQ.O.0) DELB-0.000001
IF (ZGB.EQ.0.0) ZGB -0.000001
DB-RATIO*DS

C
PX -XGB*WEIGHT-XB*DELB
PZ -ZGB*WEIGHT-ZB*DELB
DEN uCDZ*AREA* (PX+XA*DELB)
LAMBDA-MW*DELB-PX*ZW+PZ* (XWDS+RATIO*XWDB) *DS
ALPHA --PX* (ZDS+RATIO*ZDB) *DS-PZ*CD0+PZ* (XDSDS+

& RATIO*RATIO*XDBDB)*DS**2+DELB*(MDS+RATIO
& *MDB)*DS

BETA -PZ*XWW
LAMBDA- LAMBDA/DEN
ALPHA -ALPHA /DEN
BETA -BETA /DEN

C
C

A - 1.O+BETA
B - LAMBDA
C - ALPHA
DET- B**2-4.0*A*C
IF (DET.LT.0.0) GO TO 2
WP-(-B+SQRT(DET) )/(2.0*A)
YYum-.XWW*WP**2(XWDS*DS+XWDB*DB) *WJ

& -(XDSDS*DS**2+XDBDB*DB**2)+CD0
IF (WP.r.E.0.0) XX-ZW*WP+ZDS*DS+ZDB*DB-CDZ*AREA

& *WP*ABS(WP)
IF (WP.LT.0.0) XX-ZW*WP+ZDS*DS+ZDB*DB+CDZ*AREA

& *WP*ABS(WP)
THETA=ATAN2 (YY, XX)
USQ=DELB*SIN( THETA)/YY
THETA=THETA* 18 0/PI
DSD=DS*180/PI
IF (USQ.LT.0.0) GO To 3
IF (WP.GE.0.0) U- SQRT(USQ)
IF (WP.LT.0.0) U--SQRT(USQ)
W-WP*U
WRITE (21,*) DSD,THETA,UW,WP

C
3 WP=(-B-SQRT(DET))/(2.0*A)

YY--XWW*WP**2-(XWDS*DS+XWDB*DB) *W.P
& -(XDSDS*DS**2+XDBDB*DB**2)+CDO

IF (WP.GE.0.0) XX-ZW*WP+ZDS*DS+ZDB*DB-CDZ*AREA
& *WP*ABS(WP)

IF (WP.LT.0.0) XX-ZW*WP+ZDS*DS+ZDB*DB+CDZ*AREA
& *WP*ABS(WP)

THETA=ATAN2 (YY, XX)
USQ=DELB*SIN( THETA)/YY
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DSD=DS*180/PI
THETA-THETA*1 80/PI
IF (USQ.LT.O.O) GO TO 2
IF (WP.LT.O.O) U--SQRT(USQ)
IF (WP.GE.O.O) U- SQRT(USQ)
W-wp*U
WRITE (22,*) DSD,THETA,U,W,WP

C
C

2 A - -1.O+BETA
DET- B**2-4.O*A*C
IF (DET.LT.O.O) GO TO 1
WP-(--B+SQRT(DET) )/(2.O*A)
Yyy-wP**2(XDS*DS+XDB*DB) *qP

& -(XDSDS*DS**2+XDBDB*DB**2 ).CDQ
IF (WP.LT.O.O) XX-ZW*WP+ZDS*DS+ZDB*DB-CDZ*AREA

*WP*ABS (WP)
IF (WP.GE.O.O) XXuZW*WP+ZDS*DS+ZDB*DB+CDZ*AREA

*WP*ABS (WP)
THETAu-ATAN2(CYY,XX)
USQ-DELB*SIN( THETA)/YY
DSD-DS*180/PI
THETJA-THETA*180/Pl
IF (USQ.LT.0.0) GO TO 4
IF (WP.GE.0.0) U--SQRT(tJSQ)
IF (WP.LT.O.O) U- SQRT(USQ)
W-WP*u
WRITE (23,*) DSD,THETA,U,W,WP

4 WP-(-B-SQRT.(DET))/(2.O*A)
YYinXWW*WP**2-(XWDS*DS+XWDB*DB ) *%

& -(XDSDS*Ds**2.XDBDB*DB**2)+CD0
IF (WP.LT.0) XX-ZW*WP+ZDS*DS+ZDB*DB-CDZ*AREA

*WP*ABS (WP)
IF (WP.GE.0) XX-ZW*WP+ZDS*DS+ZDB*DB+CDZ*AREA

*WP*ABS (WP)

THETA-ATAN2 (YY, XX)
USQ-DELB*SIN( THETA)/YY
DSD-DS*180/PI
THETA-THETA* 18 0/PI
IF (USQ.LT.0.0) GO TO 1
IF (WP.GE.0) U--SQRT(USQ)
IF (WP..LT.0.0) U-m SQRT(USQ)
W-wP*U
WRITE (24,*) DSD,THETA,U,W,WP

C
1 CONTINUE

C
STOP

1001 FORMAT ('ENTER BOW PLANE TO DIVE PLANE RATIO')
1002 FORMAT ('ENTER MIN, MAX, AND INCREMENTS IN

& DS (degrees)')
1003 FORMAT (I ENTER DELB (%W)')
1004 FORMAT (I ENTER XGB (%L)')

SI



1005 FORMAT ('ENTER ZGB (feet)')
1006 FORMAT ('ENTER XB (%L)')
1007 FORMAT ('ENTER ZB (feet)')

END
C

SUBROUTINE TRAP(N,A,B,OUT)
C
C NUMERICAL INTEGRATION ROUTINE USING

C THE TRAPEZOIDAL RULE
C

DIMENSION A(I4,B(l)
Ni-N-i
OUT-0.0
DO 1 I-1,Ni

OUT2WO.5*(A(I)+A(I+i))*(B(I+l)-B(I))
OUT -OUT4-OUT1

1 CONTINUE
RETURN
END
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APPENDIX D

LINEARIZED DYNAMIC STABILITY COMPUTER PROGRAM

C PROGRAM LINEARIZED DYNAMIC STABILITY
C 10 20 30 40 50
C234567890123456789012345678901234567890123 4 5 6 7 8 9 0 1 2 3 4 5 6
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION L4'IASS, IA,IX, IY,IZ
DOUBLE PRECISION RPDOT,KRDOT,KPQ,KQR,KVDOT,KPKR,

& KVQ,KWP,KWR,KV,
& KVW,FKPN,KDB,MQDOT,MPP,MPR,MRR,MWDOT,MQ,MVP,MVR,
& MW,MVV,MDS,MDB,
& NDRB ,NPDOT,NRDOT,NPQ,NQR,NVDOT,NP,NR,NVQ,NWP,NWR,
& NV,NVW,NDRS

C
DIMENSION A1(4,4) ,B1(4,4),BETA1(4),ALFR1(4),ALFI1(4)
DIMENSION BB1(4,4) ,BB2(4,4) ,ZZZ1'(4,4) ,ZZz2(4,4)
DIMENSION A2(4,4) ,B2(4,4) ,BETA2(4) ,ALFR2(4) ,ALFI2(4)
DIMENSION WRI (4) ,WR2 (4) ,WI1 (4) ,WI2 (4)
DIMENSION X(9) ,BR(9) ,VEC1(9) ,VEC2(9)

C
C GEOMETRIC PROPERTIES
C

Pi 4.DO*DATAN(l.DO)
WEIGHT- 12000.0
ix = 1760.0
IY = 9450.0
iz = 10 7 00 .0
L 17.425
RHO 1.94
G = 32.2
CDO = 0.0057
MASS WEIGHT/G
CDZ 0.5*0.5*RHO
CDO CDO*0.5*RHO*L**2

C
C SURGE HYDRODYNAMIC COEFFICIENTS
C

XPP =.3E0*.5ROL*

XQQ =-1.470E-02*0.5*RHO*L**4
XRR = 4.OI0E-03*0.5*RHO*L**4
XPR = 7.640E-04*0.5*RHO*L**4
XUDOT =-7. 580E-03*0. 5*RHO*L**3
XWQ =-1.920E.-01*0.5*RHO*L**3
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XVP =-3.24OE-O3*O.5*RHO*L**3
XVF = 1.89OE-O2*O.5*RHO*L**3
XQDS = 2.61OE-O2*O.5*RHO*L**3
XQDB =-2.6OOE.-3*O.5*RHO*L**3
XRDR =-8.180E-O4*O.5*RHO*L**3
XVV = 5.29OE-O2*O.5*RHO*L**2
XWW w 1.71OE-O1*O.5*RHO*L**2
XVDR = 1.73OE-O3*O.5*RHO*L**2
XWDS - 4.6OOE-O2*O.5*RHO*L**2
XWDB = 9.66OE-03*O.5*RHO*L**2
XDSDS =-.I.16E2*O.5*RHO*L**2
XDBDB =-8.O7OE-O3*O.5*RHO*L**2
XDRDR --1.O1OE-O2*O.5*RHO*L**2
XRES - CDO*O.5*RHO*L**2

C
C SWAY HYDRODYNAMIC COEFFICIENTS
C

YPDOT - 1.27OE-O4*O.5*RHO*L**4
YRDOT = 1.24OE-O3*O.5*RHO*L**4
YPQ = 4.125E-O3*O.5*RHO*L**4
YQR --6.51OE-O3*O.5*RHO*L**4
YVDOT =--5.55OE-O2*O.5*RHO*L**3
YP = 3.O55E-O3*O.5*RHO*L**3
YR = 2.97OE-O2*O.5*RHO*L**3
YVQ =2.36OE-O2*O.5*RHO*L**3
Y;%p = 2.35OE-O1*O.5*RHO*L**3
YWR =-1.88OE-O2*O.5*RHO*L**3
YV =-9.31OE-O2*Q.5*RHO*L**2
YVW = 6.84OE-O2*O.5*RHO*L**2
YDRS =+2.27OE.-O2*O.5*RHO*L**2
YDRB -+2.27OE-O2*O.5*RHO*L**2

C
C HEAVE HYDRODYNAMIC COEFFICIENTS
C

ZQDOT =-6.81OE-O3*O.5*RHO*L**4
ZPP = 1.27OE-O4*O.5*RHO*L**4
ZPR =6.67OE-O3*O.5*RHO*L**4
ZRR =-7.35OE-O3*O.5*RHO*L**4
ZWDOT =-2.43OE-O1*O.5*RHO*L**3
ZQ --1.35OE-O1*O.5*RHO*L**3
ZVP =-4.81OE-O2*O.5*RHO*L**3
ZVR = 4.55OE-O2*AO.5*RHO*L**3
zw --3.O2OE-O1*O.5*RHO*L**2
ZVV =-6.84OE-O2*O 5*RHO*L**2
ZDS =-2.27OE-O2*O.5*RHO*L**2
ZDB =-2.27OE-O2*O.5*RHO*L**

C
C ROLL HYDRODYNAMIC COEFFICIENTS
C

KPDOT =-l.O1OE-O3*O.5*RHO*L**5
KRDOT =-3.37OE-O5*O.5*RHO*L**E-
KPQ =-6.93OE-O5*O.5*RHO*L**-S
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KQR =1.680E-02*0.5*RHO*L**5
KVDOT = 1.270E-04*0.5*RHO*L**4
KP =-l.100E-02*0.5*RHO*L**4
KR =-8.41OE-O4*0.5*RHO*L**4
KVQ =-5.115E-03*0.5*RHO*L**4
KWP =-1.270E-04*0.5*RHO*L**4
KWR = 1'.39OE-02*0.5*RHO*L**4
KV =3.055E-03*0.5*RHO*L**3
KVW =-1.870E-O1*0.5*RHO*L**3

C
C PITCH HYDRODYNAMIC COEFFICIENT
C

MQDOT =--.680E-02*0.5*RHO*L**5
MPP = 5.260E-05*0.5*RHO*L**5
MPR w 5.04OE-03*0.5*RHO*L**5
I4RR =-2.860E-03*0.5*RHO*L**5
MWDOT --6.810E-02*0.5*RHO*L**4
MQ --6.B60E-02*0.5*RHO*L**4
rvP w 1.180E-03*0.5*RHO*L**4
MVR = 1.730E-02*0.5*RHO*L**4
MW = 9.860E-02*0.5*RHO*L**3
mvv --2.510E-O2*0.5*RHO*L**3
MDS --1.113E-02*0.5*RHO*L**3
MDB =1.113E-02*0.5*RHO*L**3

C
C YAW HYDRODYNAMIC COEFFICIENTS
C

NPDOT --3.370E-.05*0.5*RHO*L**5
NRDOT =-3.400E-03*0.5*RHO*L**5
NPQ =-2.I13E-~02*0.5*RHO*L**5
NQR = 2.750E-03*0.5*RHO*L**5
NVDOT = 1.240E-03*0.5*RHO*L**4
NP =-8.405E-04*0.5*RHO*L**4
NR =-1.640E-02*0.5*RHO*L**4
NVQ =-9 .990E-03*0. 5*RHO*L**4
NWP =-1.750E-02*0.5*RHO*L**4
NWR = 7.350E-03*0.5*RHO*L**4
NV =-7.420E-03*0.5*RHO*L**3
NVW =-2.67OE-O2*O.5*RHO*L**3
NDRS =.-1.113E-O2*0.5*RHO*L**3
NDRB =+1.113E-02*0.5*RHO*L**3

C
C DEFINE THE LENGTH X AND BREADTH BR TERMS
C

X(1) =-105.9/12.0
X(2) = -99.3/12.0
X(3) = -87.3/12.0
X(4) = -66.3/12.0
X(5) = 72.7/12.0
X(6) = 83.2/12.0
X(7) = 91.2/12.0
X(8) 99.2/12.0
X(9) = 103.2/12.0



C
BR(1) = 0.00/12.0
BR(2) = 8.24/12.0
BR(3) = 19.76/12.0
ZR(4) = 29.36/12.0
BR(S) = 31.85/12.0
BR(6) = 27.84/12.0
BR(7) = 21.44/12.0
BR(8) = 12.00/12.0
BR(9) = 0.00/12.0

C
C COMPUTE AREA, CENTROID, AND MOMENT OF INERTIA
C

CALL TRAP(9,BR,X,AREA)
DO 9 I=1,9

VECi (I )-X( I)*BR( I)
VEC2 (I )X( I)*VEC1 (I)

9 CONTINUE
CALL TRAP(9,VEC1,X,XAA)
XA=XAA/AREA
CALL TRAP(9,VEC2,X,IA)

WRITE (*,1001)
READ (*,*) IRES
OPEN( 31, NAME='COEF .DAT ' ,STATUS ' OLD')
READ '31,*) RATIO, DELB, XGB, ZGB, XB, ZB
BUOY= WEIGHT + DELB
XG=XB+XGB
ZG=ZB+ZGB

C MASS MATRIX COEFFICIENTS
C

B1(1,1)= MASS - XUDOT
Bl(1,2)= 0.0
B1(1,3)= MASS*ZG
Bl(1,4)= 0.0

B1(2,1)= 0.0
B1(2,2)= MASS - ZWDOT
Bi (2,3 )=- (ZQDOT+MjASS*XG)
B1(2,4)= 0.0

Bl(3,1)= MASS*ZG
B ( 3,2)=-(MWDOT+MASS*XG)
B1(3,3)= IY-MQDOT
Bl(3,4)= 0.0

Bl(4,1)= 0.0
B1(4,2)= 0.0
B1(4,3)= 0.0
B1(4,4I)= 1.0
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B2(1,1)= IX-KPDOT
B2(1,2-)= 0.0
Bd (1,3 )=-( KVDOT+MASS*ZG)
B2 (1 ,4 )=-KRDOT

B2(2,1)= 1.0
e B2(2,2)= 0.0

B2(2,3)= 0.0

B2(3,1 )=-(YPDOT+MASS*ZG)
B2(3,2)= 0.0
B2(3,3)- MASS-YVDOT
B2(3,4)= KASS*XG-YRDOT

C
B2( 4,1 )=-NPDOT
B2(4,2)= 0.0
B2(4,3)= MASS*XG-~NVD0T
B2(4,4)= IZ-NRDOT

C
OPEN( 41 ,NAME'='DEOS.RES' ,STATUS-'NEW')
OPEN (42 ,NAME=' DEOSI. RES',STATUS= 'NEW')
OPEN(43,NAME'-'DEOS2.RES' ,STATUS='NEW')

C
IF (IRES.EQ.1) GO TO 1
IF (IRES.EQ.2) GO To 2

* IF (IRES.EQ.3) GO TO 3
IF (IRES.EQ.4) GO TO 4

1 OPEN (21,NAME='ST1.RES',STATUS='OLD')
11 READ (21,*,END=100) DSD,THETO,UO,WO,WP

GO TO 5
2 OPEN (22,NAME='ST2.RES',STATUS='OLD')

12 READ (22,*,END=100) DSD,THETO,UO,WO,WP
GO TO 5

3 OPEN (23,NAME-'ST3.RES',STATUS='OLD')
13 READ (23,*,END=100) DSD,THETO,U0,WO,WP

GO TO 5
4 OPEN (24,NAME-'ST4.RES',STATUS='OLD')

14 READ (24,*,END=100) DSD,THETO,UO,WO,WP
GO TO 5

C
5 THETAO=THETO*PI/180.0

DS - DSD*PI/180.0
DB - DS * RATIO

C
C DAMPING MATRIX COEFFICIENTS
C

AIl1,l1)--2 .0*U0*CDO+WO* (XWDS- DS-~XWDB*DB)
& +2.0*UO*(XDSDS7DS**2-XDBDB*DB**2)

A1(1,2)- 2.0*XWwO*W0+U*(x-%.;DS*DS+XWDB*DB)
A1(1,3)- (XQVAS*O;(QD ~-QBD)U
Al (1,4 )=-(WEIGHT-BUOY) VDCOS (THE:A"'O)



C
A1(2,1)- zw*w0+2.0*UO*(ZDS*DS+ZDB*DB)
Al(2,2)-- zw*u0-2.0*CDZ*AREA*DABS(W0)
A1(2,3)- (ZQ+MASS)*U0+2.0*CDZ*AREA*XA*DABS(WO)
Al (2,4 )=-(WEIGHT-BUOY)*DSIN(THETA0)

C
Al(3..l)- MW*WO+2.0*U0*(MDS*DS+MDB*DB)
Al(3,2)- MW*UO+2.0*CDZ*AREA*XA*DABS(WO)
Al(3,3)- (MQ-MASS*XG)*U0-MASS*ZG*W0

& -2.0*CDZ*IA*DABS(W0)
Al(3,4)- (XG*WEIGHT-XB*BUOY)*DSIN(THETA0)-

& (ZG*WEIGHT-ZB*BU0Y) *DCOS (THETAO)
C

Al(4,l)- 0.0
Al(4,2)- 0.0
A1(4,3).- '.0
Al(4,4)- 0.0

C
A2(l,l)- KP*U0+(KWP-.MASS*ZG)*W0
A2 (1,2 )-- (ZG*WEIGHT-ZB*BUOY) *DCOS (THETAC)
A2(1,3)- KV*UO+KVW*WO
A2(1,4)= (KR+MASS*ZG)*UO+KWR*WO

C
A2(2,1)= 1.0
A2(2,2)= 0.0
A2(2,3)- 0.0
A2(2,4)- DTAN(THETAO)

C
A2(3,1)m- YP*UO+(YWP+MASS)*WO
A2(3,2)= (WEIGHT-BUOY)*DCOS(THETA0)
A2 (3,3 )= YV*U0+YVW*WO-CDZ*AREA*DABS (WO)
A2( 3,4 )= YWR*WO+(YR-MASS)*UO-CDZ*AREA*XA
& *DABS(WO)

C
A2 (4 ,1 )- MASS *XG*WO+NP*UO+NWP*WO
A2(4,2)- (XG*WEIGHT.-XB*BU0Y)*DCOS(THETA0)
A2 (4,3)- NV*U0+NVW*W0-CDZ*AREA*XA*DABS(WO)
A2(4,4)- (NR-rASS*XG)*U0+NWKR*WO-CDZ*IA*DABS(WO)

C
C RESTORE B-MATRIX
C

DO 71 1-1,4
DO 72 3-1,4

BB1(1I,J)-B1( 1,J)
72 CONTINUE
71 CONTIN4UE

C
DO 81 1-1,4

DO 82 3-1,4
BB2 (I, 3) =B2 (I, 3)

82 CONTINUE
81 CONTINUE
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C
CALL RGG( 4,4,A1,BB1 ,ALFR1,ALFI1,BETA1,0,ZZZ1,IER)
CALL DEGSTB(DEOS1,ALFR1,ALFI1,BETA1,FREQ1,WRI,WI1)

0 C
CALL RGG( 4,4,A2,BB2,ALFR2,ALFI2,BETA2,0,ZZZ2, IER)
CALL DEGSTB(DEOS2,ALFR2,ALFI2,BETA2,FREQ2,WR2,WI2)

C
IF (DEOS1..GE.DEOS2) DEOS-DEOS1
IF (DEOS1.LT.DEOS2) DEOS-DEOS2

C
WRITE (41,2001) DSD,THETO ,UO ,WO ,WP,DEOS,

& DEOS1,DEOS2
IF (DEOS.LT.0.DO)

& WRITE (42,2001) DSD,THETO,UO,WO,WP,DEOS,
& DEOSi ,DEOS2

IF (DEOS1.LT.0.DO)
& WRITE (43,2001) DSD,THETO,UO,WO,WP,DEOS,
& DEOSI ,DEOS2

C
IF (IRES.EQ.1) GO TO 11
IF (IRES.EQ.2) GO TO 12
IF (IRES.EQ.3) GO TO 13
IF (IRES.EQ.4) GO TO 14

C
100 STOP

1001 FORMAT (P ENTER THE RESPONSE DATA FILE DESIRED
(1,2,3, OR 4) '

2001 FORMAT (8E15.5)
2002 FORMAT (F10.3)

* END
C

SUBROUTINE DEGSTB(DEOS,ALFR,ALFI,BETA,OMEGA,WR,WI)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION ALFR(4),ALFI(4),BETA(4),WR(4),WI(4)
DO 1 1=1,4

WR( I )ALFR( I)/BETA( I)
WI (I)-ALFI (I )/BETA( I)

1 CONTINUE
DEOS-1 OE+10
DO 2 1-1,4

IF (WR(I).LT.DEOS) GO TO 2
DEOS-WR( I)
IJ=1

2 CONTINUE
OMEGA=1-I (13)
OMEGA=DABS (OMEGA)
RETURN
END

& C

SUBROUTINE TRAP(N,A,B,OUT)
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C
C NUMERICAL INTEGRATION ROUTINE USING
C THE TRAPEZOIDAL RULE
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(1),B(1)
N1=N-1
OUT=0.0
DO 1 I=I,NI
OUTI=0.5*(A(I)+A(I+I))*(B(I+1)-B(I))

OUT -OUT+OUT1
1 CONTINUE
RETURN
END

9

4

p
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